Time: Three Hours]

[Maximum Marks: 100 [Minimum Passing Marks:-036

Note: Answer all questions. All question carry equal marks

- Q. No. Answer any five Question. Answer to each question should begin on a fresh page. All question carry equal marks.
- 1. Define the following with example.
 - i. Negation of a Statement ii. Conjunction iii. Disjunction. iv. Tautologies v. Contradictions.
- 2. if (L, \leq) is a Lattice then for any $a, b, c \in L$ show that the following result hold.
 - i. Idempolent ii. Associative.
- 3. State and prove the following:
 - i. Modular Equality ii. Sublattice iii. Direct product of lattice iv. Bounded lattice
 - v. Complete and complemented lattice.
- 4. Establish the equivalence of the definitions of a lattice.
- 5. a. let (L, \leq) be a lattice with least element 0 and greatst element 1. for any element $a \in L$, show that (i)av1 = 1 and $a\wedge 1 = a$ (ii)av0 = a and $a\wedge 0 = 0$
 - b. Prove that dual of a lattice is a lattice.
- 6. a. In a distributive lattice, show that if an element has a complement then this complement is unique.
 - b. Let L be a Complemental and distributive lattice. Then prove that De'morgan's Laws given by $(avb)' = a' \wedge b'$ and $(a \wedge b)' = a' \vee b'$ holds in L where a' Denotes the complement of a.
- 7. a. Show that complement of an element a in Boolean Algebra B is Unique.
 - b. Show that the following are equivalent in a Boolean Algebra B.
 - i. a+b=b, ii. a*b=a, iii. a'+b=1 iv. a*b'=0
- 8. Define the following with examples.
 - i. Sub Algebra ii. Karnaugh map iii. Conjunctive normal form iv. Disjunctive normal form.
 - v. Boolean Algebra as lattice.
- 9. a. Prove that every finite semigroup has an idempolent element.
 - b. Let $f: s \to T$ be an outs mapping from a semigroup (S,*) to an algebraic structure (T, o)
 - Where o is binary operation on T. Then prove that if f is a semigroup homomorphism then (T, o) is a Semigroup.
- 10. State and prove fundamental theorem of homomorphism of semigroup.